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TABLE I. Summary of shock-wave measurements in (tl+",) brass 
for several initial temperatures. 
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constant Cw changes by 22%. This occurrence is con­
sistent with an order-disorder transformation. 

Presumably this transformation begins below 300°C 
and continues until ,-,..,480°C. A transition also is 
indicated by the specific-heat vs temperature curves of 
Cu-Zn alloys in the above composition ranges. These 

curves9 show a sharp peak at Tc~480°C, indicating a 
transition of {3 brass to an ordered structure. Thus the 
electrical resistance, specific heat, and elastic moduli of 
near stoichiometric Cu-Zn alloys are appreciably 
affected by temperature changes. The isentropic com­
pressibility and isothermal compressibility also increase 
with increasing temperature. 

In our experiments heating the brass specimens to 
,-,..,400°C and then adding heat from the shock compres­
sion should facilatate an a (fcc)--tMbcc) structural 
transformation in the alloy. The thermal and shear 
effects of the shock compression may produce a decrease 
in the electron concentration of the a phase by diffusion 
to a point where additional electrons can be accom­
modated in the {3 phase. This change, however should be 
indicated by a cusp in each of the U.-Up curves 
(Fig. 3) similar to the results that are obtained in the 
shock-induced, first-order transition of iron and its 
alloys. Since no inflections are indicated, the observed 
behavior is principally due to a change in order. The 
extremely rapid deformation by the shock destroys order 
in the alloy. The change to disorder is facilitated by 
heating, but it is not accompanied by a volume change 
and generates no heat of transformation. It is therefore 
considered a second-order phase transitionlO analogous 
to the disappearance of ferromagnetism at the Curie 
point. It is doubtful, however, that the anomaly in the 
shock propagation is indicative of a transition in Cu-Zn 
by melting under shock compression. Calculations 
indicate, e.g., that a O.S-mbar shock produces a tem­
perature increase exceeding 650°C in Cu-Zn specimens, 
initially at 450°C. However, no change of state due to 
alloy melting is indicated by the volume changes in the 
shock compression results at 450°C. The absence of a 
discontinuity in these results supports the view that 
melting of Cu- Zn in this compression range is a longer 
process than "-'1 jLsec, the duration of our shock ob­
servations. The structural changes then are indicated 
pl'imarily by substantial displacements of the U.- Up 

curves with increasing temperature. These displace­
ments perhaps are indicative of the degree of disorder in 
the alloy at the difIerent temperatures. 

9 H. Mosev, Physik 2, 37, 737 (1936); F. Seitz, Tile Modem 
Theory of Solids (McGraw-Hill Book Co., Inc., New York, 1940), 
p.37. 

10 W. Boas, All Introduction to tile Physics of Metals and Alloys 
(John Wiley & Sons, Inc., New York, 1949), p. 167. 


