TABLE I. Summary of shock-wave measurements in $(\beta + \alpha)$ brass for several initial temperatures.

$\binom{T_i}{(^{\circ}\mathrm{C})}$	U_s (m/sec)	U_p (m/sec)	
 20	3815	0	
20	4720	618	
20	4860	750	
20	5020	709	
20	5290	913	
20	5590	1100	
20	5670	1170	
20	5870	1400	
20	5960	1440	
20	6020	1380	
20	6240	1450	
20	6200	1640	
20	5410	1270	
195	5410	1370	
195	5470	1370	
200	4520	798	
200	4590	864	
200	4620	905	
200	4630	893	
205	4040	633	
205	4070	633	
205	4330	837	
205	4334	867	
205	5110	1290	
205	5150	1240	
205	5730	1680	
205	5810	1680	
210	5970	1760	
215	5210	1320	
215	5470	1460	
215	5500	1410	
205	5500	1650	
205	5600	1650	
305	3090	262	
340	4190	003	
340	4250	803	
365	5150	1400	
385	4930	1420	
430	4540	1180	
430	4560	1190	
430	4760	1410	
440	5150	1550	

constant C_{44} changes by 22%. This occurrence is consistent with an order-disorder transformation.

Presumably this transformation begins below 300° C and continues until $\sim 480^{\circ}$ C. A transition also is indicated by the specific-heat vs temperature curves of Cu–Zn alloys in the above composition ranges. These

curves⁹ show a sharp peak at $T_c \approx 480^{\circ}$ C, indicating a transition of β brass to an ordered structure. Thus the electrical resistance, specific heat, and elastic moduli of near stoichiometric Cu–Zn alloys are appreciably affected by temperature changes. The isentropic compressibility and isothermal compressibility also increase with increasing temperature.

In our experiments heating the brass specimens to \sim 400°C and then adding heat from the shock compression should facilatate an α (fcc) $\rightarrow\beta$ (bcc) structural transformation in the alloy. The thermal and shear effects of the shock compression may produce a decrease in the electron concentration of the α phase by diffusion to a point where additional electrons can be accommodated in the β phase. This change, however should be indicated by a cusp in each of the U_s-U_p curves (Fig. 3) similar to the results that are obtained in the shock-induced, first-order transition of iron and its alloys. Since no inflections are indicated, the observed behavior is principally due to a change in order. The extremely rapid deformation by the shock destroys order in the alloy. The change to disorder is facilitated by heating, but it is not accompanied by a volume change and generates no heat of transformation. It is therefore considered a second-order phase transition¹⁰ analogous to the disappearance of ferromagnetism at the Curie point. It is doubtful, however, that the anomaly in the shock propagation is indicative of a transition in Cu-Zn by melting under shock compression. Calculations indicate, e.g., that a 0.5-mbar shock produces a temperature increase exceeding 650°C in Cu-Zn specimens, initially at 450°C. However, no change of state due to alloy melting is indicated by the volume changes in the shock compression results at 450°C. The absence of a discontinuity in these results supports the view that melting of Cu–Zn in this compression range is a longer process than $\sim 1 \,\mu \text{sec}$, the duration of our shock observations. The structural changes then are indicated primarily by substantial displacements of the U_s-U_p curves with increasing temperature. These displacements perhaps are indicative of the degree of disorder in the alloy at the different temperatures.

⁹ H. Mosev, Physik 2, **37**, 737 (1936); F. Seitz, *The Modern Theory of Solids* (McGraw-Hill Book Co., Inc., New York, 1940), p. 37

p. 37. ¹⁰ W. Boas, An Introduction to the Physics of Metals and Alloys (John Wiley & Sons, Inc., New York, 1949), p. 167.